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ABSTRACT  
 

INFLUENCE OF PERMEATE FROM DOMESTIC REVERSE OSMOSIS 
FILTERS ON LEAD CORROSION AND LEACHING FROM PLASTIC PIPES 

 
by 
 

Jyotsna Shrestha 
 
 

The University of Wisconsin-Milwaukee, 2016 
Under the Supervision of Professor Jin Li 

 

 Reverse Osmosis filters are gaining popularity nowadays, in domestic water 

supply system, to meet the increasing demand of pure and improved drinking water. 

There are various types of domestic RO filters with varying sizes, capacities, and 

treatment stages available. However, there exist a few concerns regarding the RO 

treatment system. One of the major issues in the quality and distribution of drinking 

water is the corrosive water that the RO system produces. Therefore, this research 

herein tends to focus on the corrosive effect of the permeate water on lead metal, as 

lead is considered a serious problematic drinking water contaminant. In addition, study 

of the effect of RO product water on leaching of organic carbon from common plastic 

plumbing materials was also conducted. Three RO filters with varying treatment 

stages—two-stages, five-stages and seven-stages were chosen for the tests. 
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 The lead corrosion was evaluated using immersion corrosion test of lead 

coupons in water samples for a total of forty days. The two-staged filter showed the 

highest corrosion effect among the three filters, and the seven-staged filter showed the 

least. As the number of treatment stages increased, the significant decrease in pH, 

conductivity, hardness and alkalinity of the water samples also seemed to be less. The 

overall findings suggested that the impact of number of treatment stages of the filters 

had a substantial effect on the corrosive property of the water. 

 From the migration test, it was found that the PEX and PVC pipes were prone to 

organic carbon leaching as compared to the CPVC pipes. The two-staged filter showed 

the highest extraction of organic compounds in all of the three pipes, and the seven-

staged filter showed the least extraction of TOC. In all the samples, including the 

control, the initial TOC leaching on the third day was higher than the subsequent 

leaching periods of six and nine days. The leaching of TOC by the RO water samples 

was hence successfully quantified. 
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Chapter 1 

Introduction 

1.1 Background 

 The need for safer drinking water is increasing day by day. Clean drinking water 

scarcity is a growing concern all over the world. 663 million or one in ten people still 

lack access to improved drinking water supplies.1 Even people who have access to 

water supplies such as household connections, public faucets, and boreholes may not 

have microbiologically safe water. As a result, various solutions are implemented to 

purify water, the techniques getting continuously improvised by novel and more 

efficient researches.  

 To meet the growing demand for higher quality drinking water, homeowners 

and businesses are installing the similar technology used to process popular bottled 

water brands like ‘Dasani’ and ‘Aquafina’— Reverse Osmosis Filtration. RO is 

considered one the finest techniques to purify water and is extensively used 

industrially, with recent increasing domestic use. In fact, RO is the fastest growing form 

of in-home water treatment in the U.S.2 RO is a pressure-driven process in which a 

semi-permeable membrane is used to pass water, filtering out dissolved constituents. 

The membranes used for RO have a thick barrier layer in the polymer matrix where 

most separation occurs. In most cases the membrane is designed to allow only water to 
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pass through this thick layer while preventing the passage of contaminants such as 

arsenic, copper, iron, lead, chromium, fluoride, radium, cyanide, nitrates, bacteria, 

pesticides, PCB, and benzene. As a result, RO vastly improves water purity, color and 

taste.2,3 Especially for membrane desalination, decreasing costs and higher quality 

production of potable water are some of the many significant reasons why this 

technology continues to be a preferred water treatment option in the world. 

 However, with the increasing popularity there exist various issues regarding the 

RO treatment system. One of the major concerns in the quality of drinking water and 

the distribution system is the corrosive water that the RO system produces. In the 

drinking water industry, internal corrosion of drinking water systems has often been an 

issue affecting water quality, public health, and the cost of safe water provision. 

Through this research information about the effect on the corrosion of metal pipes 

(lead in this case), of the product water of the domestic RO filters that are used at 

homes is to be highlighted. Moreover, this research tends to shed some light on the 

effect of the product water in leaching of organic carbon from common plastic 

plumbing pipes (PVC, CPVC and PEX in this case) as the use of plastic pipes in the 

water distribution section is gaining immense popularity.  
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1.2. Objective of study 

 The research here is intended to find the effect of product water from domestic 

RO filters on lead pipe systems and organic carbon leaching from plastic pipes, and 

analyze the obtained results. There are many researches done regarding the product 

water analysis of RO desalination plants and treatment systems and their corrosion and 

leaching effect on various metals and plastic pipes. However, there are very limited 

studies on the effect of the product water from point-of-use household or undersink 

RO filters. As lead has always been a concern in the safety of drinking water and the 

distribution system, the research focuses on the corrosion effect on lead coupons. 

Similarly, the leaching of various chemicals and organic matter into drinking water is a 

rising concern because of the increasing use of plastic plumbing pipes in the water 

distribution system. Hence, the main objectives of this study can be listed as:  

i. To analyze the extent of corrosion effect of domestic POU/ undersink RO filters’ 

product water in lead metal. 

ii. To conduct an immersion corrosion test with lead metal coupons, replicating the 

environment of the internal pipe system. 

iii. To analyze the water quality parameters of the permeate and see how they 

affect the results. 
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iv. To investigate the effects of permeate from the RO filters on leaching of organic 

carbon from selective common plastic plumbing pipes, using migration test 

based on standard Utility Quick Test. 

 This thesis hereafter is organized to provide an overview of relative literature, in 

Chapter Two, pertaining to the general introduction and basics of RO drinking water 

treatment system and internal corrosion theory, and the effects of the product water on 

corrosion and leaching of plumbing materials based on previous studies. Chapter 

Three of this study provides a description of the methods and materials used during 

data collection and analysis. Next, the results are provided along with discussion in 

Chapter Four, which is finally followed by conclusion and recommendations for future 

studies in Chapter Five.  
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Chapter 2 

Theory and Literature Review 

2.1. Reverse Osmosis Basics  

 
Figure 2.1. Diagram showing flow of solution in Osmosis and Reverse Osmosis 

phenomena. 
 

 When a semi-permeable membrane separates two solutions with different 

concentrations, there exists a disparity in chemical potential across the membrane. The 

water tends to diffuse from lower concentration (higher-potential) side to the higher 

concentration (lower-potential) side, until the pressure difference balances the chemical 

potential difference. This phenomenon shown in figure 2.1(a) is known as osmosis and 

the balancing pressure difference is known as osmotic pressure, which is related to 

Flow 

(a) Osmosis 

Applied Pressure 

Flow 

(b) Reverse Osmosis 

  High concentration solution  Low concentration solution 

  Semi-permeable membrane 
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the solution's vapor pressure and temperature. If the osmotic pressure is overcome by 

a greater pressure gradient opposite in direction, flow occurs from the higher 

concentration to the lower concentration region as shown in figure 1.1(b). This 

phenomenon is known as reverse osmosis or hyperfiltration.4  

2.1.1. History 

 After the first discovery of osmotic pressure back in 1748 by Jean-Antoine 

Nollet, a French physicist, the RO method was considered as a water treatment 

technique only in the late 1940’s. Researchers began exploring this area to find a way 

of obtaining pure water from brackish water, as per the technology goal of saline water 

conversion during the Kennedy administration. In 1959, two researchers at University of 

California Los Angeles (UCLA), Sidney Loeb and Srinivasa Sourirajan, successfully 

invented a high-performance synthetic RO membrane from cellulose acetate polymer. 

A treatment plant was then built in Coalinga, California led by Joseph W. McCutchan, 

head of the Saline Water Conversion Laboratory, and the UCLA team. This plant, which 

was in fact the world’s first RO plant, produced 6000 GPD of permeate water from 

brackish water. Later in 1968, Westmoreland and Bray developed the now popular 

spiral-wound membrane module for R.O. membranes.5,6 As the technology gradually 

flourished, its applications in municipal, industrial, military, and commercial areas 

increased significantly during the late 1960’s and early 1970’s. 
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2.1.2. Mechanism 

 Every RO system has at least four parts: a pre-filter, an RO membrane, a storage 

tank and a post-filter. Raw or feed water supplied from a source enters one side of the 

membrane, with extremely small pores, and the water that passes through the 

membrane gets collected in a storage tank. This obtained pure water is called the 

permeate water. Impurities and the remaining water is discharged from the device 

continuously and is called the reject water.7  

 The rate of transport of solvent through the semipermeable membrane in the 

reverse osmosis process is a function of the applied pressure, the differential osmotic 

pressure between solutions, the area and characteristics of the membrane, and the 

temperature of the solution. The performance of the semi-permeable membrane can 

be expressed through equations 1.1 and 1.2 that describe the solvent or product water 

flow through the membrane, and the salt flux through the membrane respectively.8 

Water flux: 

 FW = A (Δp − Δπ)…………………………………………(1.1) 

where, 

FW = product water flow, g/cm2-sec 

A = water permeability constant, g/cm2-sec-atm 

Δp = pressure differential applied across the membrane, atm 

Δπ = osmotic pressure differential across the membrane, atm 
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Salt flux: 

 FS = B (Δp − Δπ)…………………………………………(1.2) 

where, 

FS = salt flux, g/cm2-sec 

B = salt permeability constant, cm/sec 

C1− C2 = concentration gradient across the membrane, g/cm3 

 In an effective RO system, the permeate water has significantly lower 

concentration of solutes than the feed water. The exact operating conditions for a RO 

system usually depends on quality of feed water, quality requirements of permeate 

water, and the required water flux rate.8 

2.1.3. Applications  

 The areas where RO technology is applied ranges from improving drinking 

water, treating wastewater or brackish water, to processing food. The RO process is 

best known for its use in desalination with its share of about 80% in the total number of 

desalination plants in the world.9 It is also used for the production of bottled mineral 

water, where the water passes through a processor to remove pollutants and 

microorganisms. The RO technology is used to obtain purified naturally occurring water 

for domestic, industrial, medical, and other similar purposes. For instance, rainwater 

collected is purified with RO water processors and used as tap water or for landscape 
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irrigation and industrial cooling in Los Angeles and other cities, to resolve water 

shortages.10 RO is know for its uses in cleaning brackish groundwater and effluents.  

 In industries such as energy production, electronic, and pharmaceuticals that 

require production of ultrapure water, this technology is put in use. It is also used to 

remove minerals from boiler water. RO is used for urban and industrial water 

decontamination systems, although sometimes its cost-effectiveness can be a concern. 

RO system is significantly used to remove arsenic as well. For instance, many residents 

of Lahontan Valley, Nevada have installed household RO systems to produce drinking 

water. A study done on performance of RO systems and factors associated with arsenic 

removal efficiency in 59 households in Lahontan Valley indicated that the systems 

removed an average of 80.2% of arsenic from well water.11 RO is used in the dairy 

industry as well for processing different concentration of milk and to produce whey 

protein powders. 

2.2. Domestic Reverse Osmosis System 

 Domestic RO system functions similar to large-scale RO desalination plants; the 

main process behind water treatment is the same. When a moderately less volume of 

water, about 0-10 GPD approximately, needs to be treated, RO is usually the most 

flexible and cost efficient treatment process available for residential use.7 General RO 

systems use roughly three times as much water as they produce, but they are very 
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efficient in removing pathogenic organisms and most of the unwanted chemical 

contaminants.12 The most common type of RO system used for household purposes is 

a point-of-use system, i.e., the system is attached to the main water source, like a 

kitchen sink. 

2.2.1. Treatment Technique and Basic features 

  In a typical POU or an undersink RO system as shown in figure 2.2, tap water 

from faucet pipe enters the pre-filter. The most commonly used pre-filters are sediment 

filters that remove sediments like sand, silt, and dirt. Carbon filters may also be used to 

remove chlorine, which has adverse effects on TFC or TFM membranes. Carbon pre-

filters, however, are not used if the RO system contains a CTA membrane. Water then 

passes through the RO membrane— the heart of the system. It screens out 

contaminants and pathogens. The water is separated into two streams after passing 

through the membrane. The first stream called the brine or concentrate, containing 

rejected concentrated minerals and metals. The reject water goes out the drain. The 

second stream called permeate, which is the product water, is collected in a flexible 

bladder inside the storage tank and is pushed out by air pressure when there is water 

demand. A standard RO storage tank holds up to 2.5 gallons of water. Before the 

water comes out of the RO faucet, water passes through a post-filter from the tank. 
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Post-filters are usually made up of GAC or AC components, and they remove any 

remaining chemical traces and polish the taste of the final product water.13,14 

 
Figure 2.2. A standard 3-staged POU/Undersink RO unit13 

 The two basic RO membrane types used in the water treatment industry are 

cellulose acetate and thin-film composite membranes. Most of the RO filters available 

in the present market consist of TFC membrane, shown in figure 2.3. The popularity of 

this membrane over CTA is primarily due to higher rejection characteristics (salt 

rejection> 99.5%) and lower operating pressures.15 There are various RO membrane 

structures manufactured based on their applications. However, the most common 

physical configuration of the membrane used for RO systems in municipal treatment 
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applications is spiral wound15 as shown in figure 2.4, either CTA form, which is chlorine 

tolerant, or the TFC/TFM form, which is chlorine intolerant.  

 
Figure 2.3. Cross-sectional schematic of TFC RO membrane 

 
Figure 2.4. Spiral-wound Module15 
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2.2.2. Contaminants Appropriate for Treatment 

 RO membranes are capable of removing most of the chemical and organic 

components present in water, to produce potable water. Figure 2.5 shows the range of 

pore size of various membranes and examples of contaminants suitable for removal. 

The USEPA has identified RO as the best available technology for removing most 

inorganic compounds regulated under the SDWA. Table 2.1 shows some of the major 

contaminants that are removed by this system and their respective general rejection 

percentages. Studies have shown that RO membranes provide about 4 to 5-log (i.e., 

99.99 to 99.999 percent) removal of viruses associated with waterborne diseases.15 

Studies show that RO membranes are also effective in removing trihalomethanes (at 

least 80 percent of removal).17 RO is known for effective removal of nitrates and 

fluorides from the groundwater supplies. Thus, RO membrane is suitable for removing 

most of the inorganic and organic contaminants, pesticides, detergents, and improving 

taste, color and odor of water. 

 RO membranes, however, are not that effective against dissolved gases, most 

volatile and semi-volatile organic compounds.18 For the removal of bacteria and other 

microscopic organisms, sole RO units are not recommended for the treatment; it 

usually is more effective in conjunction with other pre- and post- treatment units. 
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Figure 2.5. Range of pore diameters for commercially available membranes9 

 
Table 2.1. Typical Rejection* Characteristics of RO Membranes16  

 

Contaminant 
% 
Reduction 

Contaminant 
% 
Reduction 

Algae 99.9% Mercury 93−98% 
Aluminum 96−99% Mold 99.9% 
Amoebic Cysts >99% Nickel 93−98% 
Arsenic 93−98% Nitrate 85−90% 
Asbestos >99% Phosphate 93−98% 
Atrazine 95% Potassium 94−97% 
Bacteria >99% Protozoa >99% 
Barium 93−98% Radioactivity 93−98% 
Calcium 93−98% Sediment >99% 
Chloride 95−98% Selenium 94−96% 
Chlorine 99.5% Silicate 85−90% 
Chromate 90−95% Silver 93−98% 
Copper 93−98% Sodium 90−95% 
Cryptosporidium 
Cysts 

99.9% Strontium 96−98% 

Cyanide 90−95% Sulfate 93−98% 
Fluoride 95−98% Thiosulfate 96−99% 
Giardia Lamblia Cysts 99.9% THM 98% 
Lead 93−98% Total Volatile Organics 95% 
Manganese 93−98% Zinc 93−98% 
Magnesium 93−98% 2,4-D 95% 

*Percentage rejection may vary based on manufacturer, membrane type, water pressure, 
temperature, routine maintenance, and TDS. 
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2.2.3. Pre- and Post- Treatment Units 

 For an RO membrane to function effectively, the permeate water needs to be 

treated prior to entering the membrane unit. The RO membranes are quite expensive 

and sensitive to various water constituents, and pre-treatment helps to protect the 

membrane from premature damages. Mostly all water sources in which RO technique is 

applied requires a certain level of pre-treatment unit like cartridge filtration (5 to 20 

µm) to avoid particulate fouling.15 City water units, for instance, often require carbon 

filtration to remove chlorine or chemicals that clog the membrane. If the permeate 

water has hardness greater than the workable limit, a water softener or hardness 

sequestering system is required. For well water units, pre-treatment is most usually 

required for iron, manganese, and hardness, which all cause scaling of the membranes. 

Therefore, devices like water softeners, iron filters, and chemical feeders to inject 

sequestering chemicals may be required.  

 A domestic RO system may or may not have a post-filter. Usually for those 

systems with post-treatment, carbon filters are added to the unit to remove remaining 

contaminants and to improve the aesthetical properties of drinking water. Post-

treatment unit serves the purpose of improvising product water by features like pH 

adjustment, remineralization, decarbonation, alkalinity recovery, corrosion inhibitor 

addition, or disinfection15. The most common post-treatment is a calcite filter, which is 

installed to increase pH of treated water. In the absence of a post-treatment unit, the 
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aggressive product water further enhances corrosion problem in plumbing materials. 

Permeate water out of a RO system is usually low in pH and low mineral content, and a 

simple calcite filter that adds calcium carbonate to the water is often used to bring the 

pH to neutral. Another way to improve the low pH water is to recover alkalinity by 

adding caustic soda or lime to permeate. If low hardness is an issue, limestone filters 

(dolomite or calcite) are used in post-treatment to condition water. Various factors 

related to end water quality, as listed below, affects the requirement for a post-

treatment unit:19  

! Chemical stability, 

! Microbiological stability, 

! Palatability, and  

! Customer acceptability 

2.2.4. Types of RO system in the United States market 

 There are various companies and vendors that manufacture and distribute 

domestic RO filters. Some of the popular brands of under counter RO filter, their price 

quote as of February 2016, and their components are listed in table 2.2.  

2.3. Problems Related with RO Treated Water 

 As with any other water treatment systems, RO technique also has some 

concerns associated to it. The chemical characteristics of the final product of water may 
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not be acceptable in many cases according to past researches20,21,22. Permeate from RO 

treatment system is found to be slightly acidic, contains very low buffering capacity and 

is very soft. The product water is adjusted, particularly with respect to buffering 

capacity; content of total hardness components (Ca2+ and Mg2+) and corrosion related 

parameters.20 Especially from systems without post-filter unit, problems like corrosive 

product water, and loss of essential minerals required for health23 have surfaced. High 

reject water discharge during production of drinking water is also another concern for 

the users of domestic RO filter. An average wastewater to clean water ratio is around 

3:1, i.e. three gallons of water is discharged as wastewater to produce one gallon of 

pure water. Installing a pump that directs the reject water to the hot water supply line 

of the house, however, can minimize this issue; or the reject water can be put in use for 

other purposes instead of draining it. There are also some novel water filters 

manufactured which promise “zero-waste” production, like the Watts ZRO-4 from table 

2.2. Slow filtration process is another grievance about the RO system. It takes about 

three to four hours to filter one gallon of water for some of the leading brands of RO 

filters.
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Table 2.2. Top-selling Domestic POU/Undersink RO filters in USA 
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Table 2.2 continued. 
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2.3.1. Metal Pipes Corrosion  

 One of the major problems related to RO system is the aggressive product 

water that the system generates.15 The final pH of the RO treated water, without 

appropriate post treatment or chemical addition, usually ranges between 5-6 and has 

no buffering capacity due to little or no alkalinity and hardness present. This poses a 

problem of corrosion to the piping materials through which the water passes. The main 

types of metal pipes used for in-house plumbing are:24  

Lead: Although in-house lead pipes are not too popular nowadays, some lead pipes 

can be found in old houses and even in some new metal alloy pipes and are highly 

prone to corrosion. 

Copper: Copper pipes are of two varieties—“rigid” and “flexible”. For long-term water 

supply lines, rigid copper pipes are used, and flexible copper is used for short runs of 

water supply. 

Chromed Copper: Chromed copper pipes are used mostly for exposed water supply 

lines, where appearance is important. 

Brass: Brass pipes are sometimes used in fittings between water supply pipes. 

Galvanized Iron: Galvanized iron pipe was a popular method of plumbing water supply 

in the home but it is no longer commonly used. 
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2.3.2. Plastic Leaching 

 With the increasing use of plastic pipes over traditional metal plumbing pipes, a 

need to weigh their possible water quality impacts has been created. After the 

production of high quality drinking water it is important to ensure that the water quality 

is not compromised by recontamination or microbial regrowth. Therefore it is vital to 

test for leaching of organic components from these plastic pipes. 

 The plastic pipes are generally stable in water. However, they have issues of 

leaching of organic contaminants in the plastic matrix or in plastic surface binding 

solvents and the penetration of the pipe by organic solvents from the exterior 

environment.25 Although there is not much research supporting the leaching effects of 

water from domestic RO filter in plastic pipes, leaching has been a concern among 

bottled drinking waters26, and manufacturing by-products and chemicals migrating 

from plastic pipes to drinking water27,28,29. The major types of plastic pipes used in 

house plumbing are:30 

Polybutylene (PB): These pipes were used extensively, as cheaper copper pipe 

replacements, during 1970’s to 1990’s. Nowadays, they’re not used much as they are 

prone to leaks. 

Polyvinyl Chloride (PVC): These pipes are inexpensive and easy to use. They are used 

mainly to carry high-pressure water, often in the main supply line in houses. However, 
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they are not suitable for hot water transfer as they can distort easily in high 

temperatures.  

Chlorinated Polyvinyl Chloride (CPVC): These pipes share similar properties with PVC 

but have more resistance to high temperature and are more flexible. They are more 

reliable than PB, cheaper and more convenient to install than copper.  

Cross Linked Polyethylene (PEX): These pipes are often used for interior house 

plumbing. Heat resistance of PEX is higher than most plastic pipes. 

High-density Polyethylene (HDPE): These pipes are extremely corrosion-resistant, long 

lasting, and flexible. They are suitable for all plumbing applications because of their 

low resistance to many solvents. 

2.4. Basic Theory of Internal Corrosion of Water Distribution System 

 According to USEPA, corrosion means “the deterioration of a substance or its 

properties due to a reaction with its environment.” It can be classified as two major 

types— external and internal corrosion. Internal corrosion is usually of main concern in 

regards to the quality and flow of the water in the distribution system. In the 

waterworks industry, internal corrosion refers to the deterioration of the interior surface 

of metal pipes or fixtures, cement lining of pipes, or asbestos-cement pipe, and the 

environment of concern is water.31 Major problems created due to internal corrosion 

are pipe failure, water quality degradation, loss of hydraulic conveyance, leakage due 
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to buildup of corrosion products on the pipe wall, and potential health and economic 

implications.32 

 Corrosion basically is an electrochemical process as shown in figure 2.6, “Me” is 

the base metal. There are four necessary components of a corrosion cell: anode, 

cathode, conductor, and conducting electrolyte. Various reasons can create an 

electrical potential gradient and form anodic and cathodic sites along the surface of a 

metal pipe. Particle deposits, pipe fixtures, manufacturing irregularities, biofilm 

formation, etc. are some of the probable factors.25  

 
Figure 2.6. Anode and Cathode reactions for metal in contact with water32 

 The oxidation of a metal takes place at the anode, generating electrons that 

travel to the cathode through the conductor. Electron acceptors, hydrogen ions formed 

by dissociation of water (H2O ⇌ H+ + OH−), combine with the electrons and form H2 

gas at the cathode.31 In case of lead pipes or lead-based solders, the reactive areas of 

the surface like the metal-crystal grain boundaries act as anodes, where corrosion 

occurs. The less reactive areas like metal grains become the cathode. The most 
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common form of oxidized corrosion product for lead is Pb(II). Another oxidized form, 

Pb(IV), is produced during extremely oxidizing conditions.32 

 The major types of corrosion in the water industry are: (1) galvanic corrosion, (2) 

pitting, (3) crevice corrosion, (4) erosion corrosion, and (5) biological corrosion. 

Galvanic corrosion occurs when two different metals come in contact, for instance in 

joints and fittings. Pitting is a non-uniform, localized corrosion that forms pits or holes 

in pipe surface, and occurs at surface irregularities, scratches or deposits. Crevice 

corrosion is localized corrosion, usually occurring at lap joints, rivets, and surface 

deposits, caused by acidity changes, oxygen depletion, DI and absence of an inhibitor. 

Erosion corrosion is caused by high flow velocity, turbulence, and change in flow 

direction that mechanically removes protective layers from pipes and corrodes the 

surface. Biological corrosion is caused by growth of organisms like bacteria, algae, 

and fungi on the pipe material.31  

2.5. Effects of Lead in Drinking water 

 The majority of the health concerns associated with internal corrosion are related 

to the release of trace metal concentrations (e.g., lead, copper, cadmium, etc.) from 

corroding metal surfaces.32 Various regulations have been made to control lead 

contamination. For instance, USEPA’s Lead and Copper Rule created an increased 

awareness and emphasis on corrosion control in distribution systems. In 2011, changes 



www.manaraa.com

!

25 

to the Safe Drinking Water Act reduced the maximum allowable lead or “lead free” 

content to be a weighted average of 0.25 percent calculated across the wetted 

surfaces of pipes, pipe fittings, plumbing fittings, and fixture and 0.2 percent for 

solders and flux.33 Although the exposure to lead is minimized by regulations like LCR 

and SDWA, it is not completely eradicated. Taking one of the examples of recent a 

case in Flint, Michigan, when the people of the city suffered from serious high levels of 

lead contamination (over 100 ppb) in their tap water, which was mainly caused by 

corrosion of old lead pipes after the city switched its water source in April, 2014.34 The 

main sources of lead contamination are lead pipes, solders and lead-containing brass 

fittings, and some minor sources are PVC pipes, which contain lead stabilizers and 

galvanized steel pipes. Houses built before 1986 are more likely to have lead pipes, 

fixtures and solder.33 As lead is comparatively inexpensive and flexible, many faucets 

sold are made from brass, copper, zinc and a small amount of lead. Lead is usually 

used to seal cracks between copper and zinc fittings, and makes brass malleable to be 

forged and converted into vital parts of every faucet.  

 One of the major concerns of drinking water with exceeding tolerable lead 

concentration is health. Children, especially, are affected by low levels of lead, which 

may cause problem in behavior and learning, resulting in lower IQ level and 

hyperactivity, slower growth, hearing problems, anemia, seizures, and in some rare 



www.manaraa.com

!

26 

cases, coma or even death. In adults, there are possible cardiovascular effects, high 

blood pressure, hypertension, kidney failures, and reproductive problems.33 

 Various studies have been conducted to test corrosion effects of product water 

from RO systems in water pipeline materials, especially in commercial desalination 

plants.35,36,37 For instance, in a study testing the effect of remineralization options on the 

stabilities of pipeline materials, corrosion rate of cast iron was highest for all 

remineralization methods.35 There, however, are only limited references available on 

corrosion effects of domestic RO product water on in-house pipeline materials. 

Therefore, this study focuses mainly on the effects of POU RO filters’ product water on 

the household plumbing hoping to give a better insight on this water treatment 

technique which is gaining increasing popularity in households nowadays.  
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Chapter 3 

Experimental Set-Up and Procedure 

3.1. Reverse Osmosis Filters Used 

 Three domestic RO systems, from table 2.2, were selected based on the number 

of stages and market popularity, for the experiment. Their general mechanisms are 

briefly explained below. 

3.1.1. Home Master TMAFC Artesian Full Contact RO System 

 
Figure 3.1. Home Master TMAFC Artesian Full Contact RO System38 

 This RO water filtration system, figure 3.1, consists of five components as shown 

in table 2.2. The schematic diagram of the general arrangement of the system is shown 
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in figure 3.2, where Sediment filter (1), Carbon filter (2), RO membrane (3), 

Carbon/Remineralization filter (4), Storage tank (5), and a recirculation line having check 

valve “A” and check valve “B”. The storage tank is connected to the recirculation line 

between the check valves.39 

 

 
Figure 3.2. Schematic of Tap Master Artesian Full Contact system39 

 In a seven-staged process, water from a potable municipal or well water supply 

firstly passes through the sediment filter. Water then flows through the coconut shell 

carbon filter, and next through the RO membrane that removes average of 98% of 

sediment, chlorine, and other common chemicals and dissolved solids. Water from the 

RO system with dropped pH of about 6.2-6.8 enters the Carbon/Remineralization filter 

then flows through Carbon/Remineralization filter, and exits filter with pH 7.0. Next the 

water flows through Check Valve “A” into the storage tank. When required, water flows 
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from the storage tank through Check Valve “B” and enters Carbon/Remineralization 

filter and exits with pH around 8.0.39  

 The general system specifications for the optimum operation of Home Master 

TMAFC Artesian Full Contact RO System are: 40 

! Feed water pressure: 40 PSI – 95 PSI (35 PSI with permeate pump) 

! Feed water temperature: 40 oF – 100oF 

! Maximum TDS: 2000 ppm 

! Maximum Hardness: 10 gpg 

! Maximum Iron: 0.2 ppm 

! pH limits: 4.0 – 10.0 

3.1.2. APEC - Top Tier ROES-50 RO System 

 The five components of this system makes a five-staged water purification 

process, figure 3.3, where the tap water firstly goes to the Sediment removal filter (1), 

which removes dust and other particulate matter, to protect and extend the life of the 

RO membrane and system. Then water flows through the two Carbon block filter (2 

and 3), which removes excess chlorine, VOCs, unpleasant tastes, odors, and 

cloudiness. In the fourth stage, water flows through the high rejection TFC RO 

membrane (4) where a wide variety of contaminants including arsenic, bacteria, lead, 

fluoride, chromium, radium, etc. are removed. The final stage is the Coconut shell 
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refining carbon filter (5) that removes any possible residual taste from the storage 

tank.41 

 
Figure 3.3. Component itemization of APEC - Top Tier ROES-50 RO System42 

The general specifications of this model are: 41 

System capacity: 50 GPD at 60 PSI, 30 GPD at 50 PSI and 77oF 

1. Sediment pre-filter and housing (1st stage filter) 
2. Carbon block pre-filter and housing (2nd stage filter) 
3. Carbon block pre-filter and housing (3rd stage filter) 
4. Membrane and housing (4th stage filter) 
5. In-line carbon filter (5th stage filter) 
6. Storage tank 
7. Tank ball valve 
8. ASO – Automatic Shut Off valve 
9. Check valve (Internal check valve encased in plastic fitting) 
10. T-fitting 
11. Feed water inlet 
12. Product (filtered) water outlet 
13. Bracket 
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Storage Tank Capacity: 4 gallons 

Feed water pH: 2.0 – 11.0 

Feed water pressure: 40 PSI – 85 PSI 

Feed water temperature: 40 oF – 100 oF 

Maximum TDS: 2000 ppm 

3.1.3. Active Aqua RO System AARO312 

 This two-stage system consists of a RO membrane and a 10" carbon and 

sediment combination filter to reduce chlorine and other unwanted contaminants, to 

assure good membrane life. The combo filter is the first stage in the RO process, in 

which the sediment portion effectively removes particles and sediments like sand. The 

sediment filter’s life depends on the amount of total particles in the water supply. The 

carbon portion of the filter effectively reduces VOCs from the feed water supply. It 

filters 2,000 gal at 1.0 GPM. The RO membrane component in the system reduces TDS 

like salts or calcium. A properly operating membrane usually provides a TDS reduction 

of at least 90%. A minimum of 40 PSI is required to properly operate the system.43 The 

major components of this RO filtration system is shown in figure 3.4. 
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Figure 3.4. Active Aqua RO System AARO312 and its components43 

3.2. Immersion Corrosion Testing and Sampling Protocols 

 The effect of permeate from the filtration systems on corrosion of lead metal was 

tested using the immersion corrosion experiment and the corrosion effect was 

estimated through the coupon weight loss method. The three filters were set up with 

“Masterflex® Easy Load II” pumps (Model 77201-60) to flow feed water from a common 

intake water source, which was the tap water. The pumps were set at a flow of 0.08 

L/min using L/S™ 16 tubing. A set of six water samples were collected from the treated 

permeate of each of the filtration systems. The water quality parameters such as pH, 

conductivity, total hardness, and total alkalinity of each of the samples were then 

tested based on the instruments and methods as listed in Table 3.1. The samples were 

then set up for corrosion testing based on the ASTM standards.44,45 

1. Feed Line from Carbon/ Sediment Combo Filter 
to Membrane 

2. Purified Water Line 
3. Waste Water Line 
4. Flow Restrictor 
5. Source Water Connection 
!
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Table 3.1. Instruments and methodology used to test water quality parameters 
Water quality 
parameter 

Instrument Standard Method 
reference number46 

pH 
VWR Symphony® B30PCI 
benchtop meter 

 

Conductivity 
VWR Symphony® B30PCI 
benchtop meter 

 

Total 
Hardness 

 SM 2340 C. Hardness 
EDTA Titrimetric 
Method  

Total Alkalinity 
 SM 2320 B. Titration 

Method 

3.2.1. Preparation of Lead Coupons  

 Lead coupons were prepared from lead metal sheets with density of 11.3 g/mL, 

obtained from Fisher Scientific. The metal sheets were cut into dimensions of 2in!× 

1in!× 0.03in coupons, with a small hole of about 
3

16
 in. diameter punctured at one end. 

As more uniform results is expected if a considerable layer of metal is removed from 

the specimens to eliminate variations in condition of the original metallic surface44, the 

coupons were vigorously wiped and then polished with paper towel. All coupons were 

then stored in a desiccator until they were ready to be immersed in the water samples. 

The dried lead coupons were then weighed on an analytical balance and recorded. The 

initial physical state of the coupons can be seen in figure 3.5.  
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Figure 3.5. Clean and dried Lead coupon  

3.2.2. Reactor Assembly 

 Each lead coupon was placed in 500mL plastic bottle reactors, as shown in 

figure 3.6, filled with the water samples for study and were conducted in replicates. 

Nylon strings, which were sanitized using acid bath, were placed through the hole on 

the coupon and attached to the cap of the reactor bottle to immerse it in the water 

sample such that the metal freely suspended inside the bottle. Based on ASTM G1 

standard44, the nylon string was chosen as it does not interfere with the metal and 

water sample, and no galvanic interactions occur. Then the reactor bottles were 

properly sealed and covered with aluminum foil, to protect the samples from any 

foreign contaminants or evaporation. Nine of the sample reactors were gently stirred 
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continuously and the remaining nine samples were left stagnant, to simulate a proper 

aspect of both the flow through pipes, and stagnant water in-between operations of 

the domestic filters. Each of the samples was clearly marked with unique designation. 

The experiment was conducted at room temperature (about 21.4oC) and was carried 

out for 40 days to achieve sufficient weight loss according to ASTM G31 standard44. 

 
Figure 3.6. Sample reactor 500mL-bottle with immersed Lead coupon 

3.2.3. Method of Cleaning Specimens  

 After the 40-day immersion test, the coupons were carefully taken out from the 

reactors and dried by hanging the coupons in empty bottles. Then they were stored in 

vacuum desiccators. The physical appearance of the coupons were observed and 

recorded as shown in figure 3.7. They were then carefully cleaned using mechanical 

cleaning method to remove the corrosion products. Abrasive paper towel was used to 
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gently scrub off the corrosion products from the surface of the coupons. The cleaning 

method was conducted very carefully so as not to remove sound metal. After the 

cleaning process, the weights of the coupons were recorded.  

3.2.4. Corrosion Rate Calculation and Lead Concentration 

 An extra aliquot from each of the samples were filtered through a 0.45 μm filter 

to determine soluble lead concentrations by Inductively Coupled Plasma-Mass 

Spectroscopy (ICP-MS) according to EPA 200.8 method. 

 The average corrosion rate was then calculated by the following equation:44 

Corrosion rate= (K × W) / (A ×!T × D)…………………(3.1) 

where, 

K = a constant (3.45 × 106, for Corrosion rate in mpy) 

T = time of exposure in hours to the nearest 0.01 h, 

A = area in cm2 to the nearest 0.01 cm2, 

W = mass loss in g, to nearest 1 mg, and 

D = density of metal in g/cm3. 

3.3. Migration Experiment and TOC Test Protocol 

 Three varieties of plastic pipes were selected for the experiment: ½’’ PVC (JM 

Eagle Sch. 40), ½’’ CPVC (Charlotte FlowGuard Gold) and ½’’ PEX (SharkBite), for 

evaluation of TOC leaching, using Shimadzu Total Organic Carbon Analyzer (TOC-



www.manaraa.com

!

37 

L/CPH), at room temperature based on migration test using Standard Utility Quick 

Test47. All pipes were certified with NSF 14 and 61 standards for use in potable water 

systems. 

3.3.1. Sample Preparation 

 Each pipe was cut into a total length of three feet. The overall dimensions of the 

pipes are shown in table 3.2. The cut samples were then rinsed thoroughly with DI 

water, after removing all tapes and labels. The water samples were collected from the 

RO filters, and stored in clean glass bottles at 4oC. The surface area-to-volume (S/V) 

ratios, with the volume of water samples used are also shown in table 3.2. 

Table 3.2. Overall dimensions of Plastic pipe samples 

Pipe Brand 
Internal 
Diameter 
(in) 

External 
Diameter 
(in) 

Length 
(feet) 

Water 
Volume 
(mL) 

S/V ratio 
(cm2/mL) 

½’’ PVC (JM Eagle 
Sch. 40) 

0.609 0.84 3 170 6.24 

½’’ CPVC 
(Charlotte 
FlowGuard Gold) 

0.485 
 

0.625 3 108 7.51 

½’’ PEX (SharkBite) 0.475 0.625 3 110 7.73 

3.3.2. Leaching/Migration Process 

 Each pipe types were filled with the water samples and the open ends of the 

pipes were covered with sealant tapes. There were a total of twelve pipes including 

three different pipes with tap water samples, collected for a comparison base. The 

leaching test was conducted for three consecutive 72–hour periods, under stagnant 
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conditions. After each leaching period, the leachate water was collected for TOC 

analysis. Then the pipes were refilled with fresh RO water samples. The initial water 

samples before each migration tests were also tested for TOC. 

3.3.3. TOC Analysis 

 The initial and final water samples from each of the three periods of leaching 

test were collected and tested for TOC using the Shimadzu (TOC-L CPH) according to 

USEPA method 415.148). To prepare the sample vials, first the vials were soaked in 1M 

HCl acid bath, and rinsed with Ultrapure Milli-Q™ water. After air-drying, the top of 

each vials was covered with aluminum foil and then combusted in 550oC Thermolyne 

furnace for at least four hours to remove all trace organics. Next, the TOC-L CPH 

machine was calibrated using standard solutions of 0, 1.0, 2.5, 5.0, and 7.5 ppm. Each 

water sample was then poured into the prepared vials and 2 drops of concentrated HCl 

were added to maintain the pH around 2.0 for storage, before placing in the machine 

to get the results. 
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Chapter 4 

Results and Discussion 

4.1. Water Quality Parameters 

 After the 40-day wait period of the lead immersion test, changes were observed 

in the initial and final water quality of the permeate from the reverse osmosis filters. All 

the readings were observed at room temperature of about 21.4oC.   

 
Figure 4.1. pH change of water samples with Lead coupons after 40 days; error bars 

show standard error of the mean. 
 

 The average initial pH of the water samples from the two-staged filter (Active 

Aqua AARO312), the five-staged filter (APEC ROES-50) and the seven-staged filter 

(Home Master TMAFC) were 6.98, 8.94 and 8.11 respectively.  The pH of samples from 

6.98%

8.94%

8.11%
7.40% 7.37% 7.45%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

2"staged)filter) 5"staged)filter) 7"staged)filter)

pH
)

Ini0al%pH%

pH%a5er%40%days%



www.manaraa.com

!

40 

the five-staged filter and the seven-staged filter were comparatively higher than that of 

the two-staged filter, as the water in both of those systems was passed through a 

carbon/remineralization post-filter which added calcite that gets dissolved in the 

slightly acidic water to raise and neutralize the pH. Regardless of the initial pH levels, 

the pH levels of all the samples at the end of the experiment reached around 7.4, as 

shown in figure 4.1. The average final pH values of the samples from two-staged, five-

staged and seven-staged filters were 7.4, 7.37 and 7.45 respectively. 

 
Figure 4.2. Conductivity change of water samples with Lead coupons after 40 days; 

error bars show standard error of the mean. 
 

 The change in conductivity is documented in figure 4.2, where it can be seen 

that the conductivity of all the three filters decreased after the experiment. The seven-

staged filter samples had the highest initial average conductivity of about 88.08μS/cm, 
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which was expected as the water in this system passed through the remineralization 

post-filter twice and thus more amount of TDS are added back to the final water. The 

two-staged filter samples had the least initial conductivity of about 36.7μS/cm in 

average, mainly because the “pure” permeate had most of the minerals and TDS 

stripped from the RO membrane. The largest extent of decrease was observed in the 

two-staged filter samples with about 67% decrease and the smallest decrease was in 

the seven-staged filter samples with less than 1% decrease. The five-staged filter 

samples had about 13% reduction. The main reduction in the conductivity of the 

samples could be due to the corrosion effect, as a corroding metal forms an ionic bond 

with the available ions in the water solution, thus, decreasing the conducting capacity 

of the water. 

 
Figure 4.3. Change in hardness of water samples with Lead coupons after 40 days; 

error bars show standard error of the mean. 
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 The initial water samples from the filters, as expected, were “soft” based on the 

degree of hardness standard developed by the USEPA (1986) as the hardness was 

below 75mg/L as CaCO3. The low hardness level of the three RO permeate can be 

attributed to the removal of most of the initial water components that cause hardness. 

The hardness of the water samples, as shown in figure 4.3, was observed to have 

decreased after the experiment. The hardness reduction of the water samples from the 

seven-staged filter was quite insignificant, about 1.25%, as the initial average hardness 

was about 24mg/L as CaCO3 and the final hardness was about 23.65mg/L as CaCO3. 

The two-staged filter samples had the greatest reduction in hardness of about 67%, 

and the five-staged filter samples had about 60% decrease in hardness. The hardness 

of the two-staged filter was comparatively lowest because the filtration system lacked a 

post-filter like the other two filters, which adds back major hardness-causing minerals 

like calcium and magnesium. 

 The alkalinity of the water samples, which are documented in figure 4.4, was 

also observed to have decreased similarly to the hardness of the samples, especially in 

AARO312 and ROES-50. The alkalinity of all the samples were caused mainly by 

bicarbonates as the P-alkalinity of the samples was found to be zero during the titration 

experiment. The greatest reduction was found in the two-staged filter samples, which 

was about 70% and the least reduction was found in the seven-staged filter samples, 

which had about 9% reduction. The five-staged filter samples, which had the highest 
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alkalinity, underwent significant reduction after the experiment as well with around 59% 

decrease. 

 
Figure 4.4. Change in alkalinity of water samples with Lead coupons after 40 days; error 

bars show standard error of the mean. 
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shows corrosion effect on the lead coupons from both the stirred and stagnant 
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surface with only slight corrosion product on, figure 4.5 (b). White precipitates were 

also found at the bottom of the reactors. The main reason behind the corrosion due to 

these water samples, as confirmed by literature review, is their water quality like the 

low pH level, low alkalinity, low TDS, and softness of water that are known to enhance 

corrosion. 

 There was not much corrosion products on the lead coupons that were 

immersed in the water samples from the five-staged filter. Three out of six samples 

showed slight effects of corrosion; the surfaces of these coupons, as shown in figure 

4.6, were observed to have slight abrasions and white corrosion products on the 

surface. Some white precipitation was observed in these samples as well. Although the 

water quality of the samples from this filter were considered quite unfavorable for 

corrosion, some samples leached lead from the coupon. This could be due to the lower 

hardness and alkalinity that were less than the usually suitable levels of 50 mg/L as 

CaCO3 or more. 
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(a)  

 

 

 

 

 
 
 
 

 

 

(b) 
Figure 4.5. Lead coupons immersed in (a) stagnant water samples, and (b) stirred water 

samples from two-staged RO filter 
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Figure 4.6. Lead coupons immersed in water samples from five-staged RO filter 

 
Figure 4.7. Lead coupons immersed in water samples from seven-staged RO filter  

 As for the coupons in the seven-staged filter water samples, in figure 4.7, 

negligible physical change was observed on the metal surface. Minor discoloration of 
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the lead surface was observed in the coupons and only one of the lead coupons 

underwent weight decrease. There were only slight white deposits at the bottom of the 

reactor holding these coupons. As the water quality of the samples from this filter was 

suitable for preventing corrosion, such results are quite justified. 

 The average lead corrosion rates of the water samples during the 40 days were 

calculated using equation 3.1 and the results obtained are shown in table 4.1. For this 

experiment, the value of ‘K’ was taken as 3.45 × 106 to get corrosion rate in mpy, time 

‘T’ of exposure was 960 hours, surface area of coupon ‘A’ was 12.90 cm2, and density 

of the lead metal used was 11.3 g/cm3. Comparing the corrosion rates between 

different water samples, corrosion of samples from the seven-staged filter was the 

least. The corrosion rate for the one sample that underwent weight change was around 

0.007 mpy. The most heavily corroded samples were from the two-staged filter 

permeate, with average corrosion rate of about 0.382 mpy. Considering the samples 

from the five-staged filter, which had weight loss and showed slight corrosion, had an 

average corrosion rate of about 0.064 mpy. 

Table 4.1. Average lead corrosion rates of the water samples from the three RO filters 
Water sample Corrosion rate (mpy) 

Two-staged RO filter 0.382035471* 

Five-staged RO filter 0.064083369** 

Seven-staged RO filter 0.007394235*** 
Note:* Average of six samples. ** Average of four samples. *** One sample 
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 The lead concentrations of some of the samples were surprisingly higher, 

compared to the expected concentrations based on calculated corrosion rate, even in 

the samples from the five-staged and the seven-staged filters. The highest lead 

concentrations among the water samples after the experiment, which was found using 

ICP-MS, are shown in figure 4.8. All the values exceed the EPA limit of lead 

concentration, i.e. 15 ppb.49 The lead concentration is a result of both corrosion and 

lead solubility processes.32 Thus, the reason of such high lead concentrations in some 

of the samples from five-staged and seven-staged filters could be because of the new 

condition of the metal coupons, which are more susceptible to leaching. Moreover, the 

higher lead concentration could be because of other lead products like Pb(II) 

carbonates that are likely to be formed in the pH range (around 8 and lower) of the 

water samples32. 

 
Figure 4.8. Highest lead concentration among the samples from two-staged, five-

staged and seven-staged RO filters 
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4.3. Migration Test 

 The initial and final TOC concentrations of the RO filter water samples in the 

three different plastic pipes after three, six and nine days are shown in figures 4.9, 4.10 

and 4.11, respectively. The initial and final TOC concentrations of all the samples, 

including tap water samples are tabulated in table 4.2. The PEX and PVC pipes showed 

some significant increase from the initial TOC concentrations of the water samples from 

the three different types of RO filters. The CPVC pipes, however, showed almost none 

or only slight increase in the TOC concentration. The control samples also showed 

similar changes in the TOC concentration in the plastic pipes. 

 
Figure 4.9. Change in TOC concentration of water samples from the RO filters after 

three days 
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Table 4.2. Initial and final TOC concentrations (in mg/L) of water samples for three 
leaching periods 

Day 3 2-staged 
Filter 

5-staged 
Filter 

7-staged 
Filter 

Tap 
Water 

Initial TOC 0.834372 1.57 1.26 1.72 
Final TOC (PEX) 1.389 2.58 1.59 2.23 
Final TOC (PVC) 1.559 2.83 1.31 2.07 
Final TOC (CPVC) 0.9769 1.74 1.38 1.97 

     
Day 6 2-staged 

Filter 
5-staged 
Filter 

7-staged 
Filter 

Tap 
Water 

Initial TOC 0.65 1.76 1.25 1.72 
Final TOC (PEX) 0.85 2.46 1.51 2.13 
Final TOC (PVC) 1.13 2.18 1.31 2.04 
Final TOC (CPVC) 0.83 1.84 1.25 1.81 

     
Day 9 2-staged 

Filter 
5-staged 
Filter 

7-staged 
Filter 

Tap 
Water 

Initial TOC 0.59 1.36 1.16 1.731 
Final TOC (PEX) 0.77 1.64 1.29 2.03 
Final TOC (PVC) 0.78 1.58 1.19 2.09 
Final TOC (CPVC) 0.62 1.41 1.22 1.90 

 

Among the three filters, two-staged filter showed the most percentage increase in TOC 

concentrations in the water samples of PEX, PVC and CPVC pipes. Their percentage 

increment was highest in the third day; about 66% in PEX pipes, 87% in PVC pipes, and 

17% in CPVC pipes. The seven-staged RO filter showed the lowest percentage 

increment, with about 26% in PEX pipes, 4% in PVC pipes, and 10% in CPVC pipes on 

the third day. On the sixth and ninth day, the two-staged filter again had the highest 

percentage increment and the seven-staged filter had the lowest. 
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 The TOC concentration from the water samples of the five-staged filter and the 

seven-staged filter were found to be greater than that of the two-staged filter. The 

main reason behind this could be the presence of the post carbon filters, which adds 

back carbon components to the water. 

 
Figure 4.9. Change in TOC concentration of water samples from the RO filters after six 

days 

 
Figure 4.11. Change in TOC concentration of water samples from the RO filters after 

nine days 
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 The percentage increase of TOC concentration as compared to the initial water 

samples of each of the leaching period, in the plastic pipes are shown in figures 4.12, 

4.13 and 4.14 for the two-staged filter, five-staged filter and seven-staged filter 

respectively. In most of the samples, the increased percentage of the TOC 

concentration decreased with time. For instance, in the two-staged filter the 66% 

increase of TOC on the third day decreased to 30.14% on the sixth day and 30.11% on 

the ninth day in the PEX samples. Most of the PEX samples showed gradual decrease 

in the TOC percentage. Also, in all the three filter samples from the PVC pipes, there 

was a gradual decrease in values of TOC increment percentage from third day to ninth 

day.  The samples from CPVC pipes, on the other hand, initially had decrease in TOC 

increment percentage values from the third day to the sixth day, but later they showed 

very slight increase in the TOC percentage on the ninth day. These reductions in TOC 

leaching, are similar to those described by other researchers50,51. Generally, the gradual 

extraction of compounds from a sample material will lead to the decrease of 

concentration of migrates over time. 
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Figure 4.12. Percentage increment in TOC concentration from initial concentration 

after three, six and nine days in two-staged filter samples  
 
 

 
Figure 4.13. Percentage increment in TOC concentration from initial concentration 

after three, six and nine days in five-staged filter samples 
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Figure 4.14. Percentage increment in TOC concentration from initial concentration 

after three, six and nine days in seven-staged filter samples 
 

 
Figure 4.15. Percentage increment in TOC concentration from initial concentration 

after three, six and nine days in tap water samples  
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Chapter 5 

Conclusion and Recommendation 

5.1. Lead Coupon Immersion Test 

5.1.1. Conclusion 

 The immersion corrosion test helped to quantify effects of the water quality 

parameters like pH, conductivity, hardness, and alkalinity on release of lead metal. This 

study showed that pH played an important role in lead corrosion; a lower level of pH 

led to an increase in lead release in the water samples. Conductivity also had a directly 

proportional effect on the lead release. The lower the conductivity or TDS amount, the 

more corrosion was observed in the lead coupons. Alkalinity and hardness had a similar 

effect before and after corrosion, less alkalinity and less hardness leading to more 

instances of corrosion.  

 Based on this study, the treatment stages used in the RO filtration system also 

had a significant effect on the corrosion of lead. The two-staged filter showed the most 

lead corrosion effect, and the seven-staged filter showed the least. The main reason 

behind the severe corrosion shown by the samples from the two-staged filter is the 

aggressive water quality of the samples, i.e. lower pH level, less alkalinity resulting in 

low buffering capacity, low conductivity and soft water. Such quality of the parameters, 
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as proved by other researches as well, has high chances of having a corrosion effect. 

The samples from the filters with a remineralization post-filter showed almost no 

corrosion effect (in case of seven-staged filter) or very light corrosion effect (in case of 

five-staged filter). The post filter increased the pH, hardness, alkalinity and conductivity 

significantly, making the water samples less corrosive. Therefore, the presence of a 

post-filter can significantly improve the water quality that inhibits corrosion of lead.  

 All the three filters had some extent of corrosion rate. This was somewhat 

expected with the use of new metal coupons as they are highly prone to corrosion. The 

corrosion rate of the two-staged filter samples was the highest; with the most number 

of lead coupon samples showing physical corrosion effect. With three out of six lead 

samples showing slight corrosion, the corrosion rate of the five-staged filter was less 

than the two-staged filter, but higher than the seven-staged filter. Only one of the 

samples from the seven-staged filter showed corrosion with the least corrosion rate as 

compared to other filters. The concentration of lead, however, was found to be greater 

than expected, most probably due to the vulnerable new coupons. Although new 

coupons were used, the results does show credibility based on the intensity and 

variation of corrosion among the various water qualities and treatment stages of the 

RO filters.  
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5.1.2. Recommendations for Future Research 

 As this experiment was conducted for forty days and with new lead coupons, 

there are potential improvements that can be used for better results. Some 

recommendations for further studies could be: 

i. Use of pre-corroded lead coupons to assess more accurate effect on old kitchen 

pipes. 

ii. Investigating the precipitates and deposits in the metal coupons and reactor 

bottles for better assessment of lead solubility and final concentrations in the 

water samples. 

iii. Analyzing other water quality parameters that may have properties related to 

corrosion effects, for better understanding of the corrosion variation caused by 

different water quality.  

5.2. Leaching/Migration Test 

5.2.1. Conclusion 

 The TOC release from various brands of plastic plumbing pipes was successfully 

quantified over the three consecutive 72-hours migration test. For the three different 

RO filter water, the PEX and PVC pipe samples showed substantial increase from the 

initial TOC concentrations, and the CPVC pipe samples showed almost none or minor 

increase in the TOC concentration. From this experiment, it can be concluded that the 
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PEX and PVC pipes are prone to organic carbon leaching as compared to the CPVC 

pipe. The two-staged filter showed the highest extraction of organic compounds in all 

of the three pipes, and the seven-staged filter showed the least extraction of TOC. In 

all the samples, including the control, the initial TOC leaching on the third day was 

higher than the subsequent leaching periods of six and nine days. Due to the steady 

removal of organic components from the pipe samples, the latter leachates were 

gradually decreasing. Consequently, the leaching of compounds in plumbing 

installations will be most noticeable shortly after operation. 

5.2.2. Recommendations for Future Research 

 Although the quantification of TOC provides an idea about the leaching 

properties of the plastic materials, the total amount of TOC leached cannot be directly 

related to the amount of microbial growth supporting nutrients. Thus, analyzing other 

quality parameters like AOC (Assimilable Organic Carbon) is also required. Moreover, it 

is found that the release of organic components is higher at elevated temperature50. 

Therefore, to assess for the worst-case scenario, testing could be done with stagnant 

samples at higher temperature. Another improvement could be by testing other 

varieties of the plumbing pipes as products that are made from the same polymeric 

material can have different migration properties because of different processes during 

production. 
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